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Overview

Timeline Barriers
e Project start date: April 01, 20109. e Protective layers for Li metal anode
Project end date: March 31, 2021 — Thin, dense and uniform protective coating
Percent complete: 40% — Stable to over wide voltage range
— Scalable and compatible with pouch cell
Budget Partners
e Total project funding e Project lead
— DOE share: $800K - U
_ Contractor share: $90K e |Interactions/collaborations

— Ashland
Funding received in FY 2020

— DOE share: $450,327
— Contractor share: $45,000



Relevance
Objectives

To research, develop, and demonstrate multifunctional Li-ion conducting interfacial materials as a
protective layer for Li metal anodes, enabling Li metal anodes to cycle with a high efficiency of
~99.9% at a high electrode capacity (4 mAh/cm?) and a high current density (>2 mA/cm?) for 400
cycles.

Demonstrate Li-metal battery cells with an energy density of ~300 Wh/kg and a 280% capacity
retention over 300 cycles using Li metal anodes with the developed protective layer.

Impacts

Develop a new hybrid Li-ion conductor that enables safe and high-performance Li metal anodes.

The use of the developed Li metal anodes enable Li-metal oxide batteries with high energy density
and long cycling life.
Promote increased adoption of electric and plug-in hybrid electric vehicles (EVs and PHEVs), and

reduce petroleum consumption in the transportation sector by helping battery-powered vehicles
become accepted by consumers as a reliable source of transportation



Milestones

Sep. 2019

Mar. 2020

Jul. 2020

Jan. 2021

Mar. 2021

Identify the optimal composition of the Li-ion conducting materials and
demonstrate Li metal batteries under high-capacity (4 mAh/cm?2) and
lean-electrolyte (7 uL/mAh) conditions.

Complete the scale-up synthesis of the interfacial layer precursors

Study the effects of the interfacial layer on the lithium nucleation

Develop protected Li anodes using optimal electrolyte, which have 99.9%
CE of Li deposition at a capacity of 4 mAh/cm?

Demonstrate Li metal batteries with a cycle life of 100 cycles under
limited Li and lean-electrolyte conditions.

Complete

Complete

In progress

On track

On track



Electrolyte retained
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Technical Accomplishment - 1. Bottom-up design of multifunctional
Li-ion conducting interfacial materials
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Thin RPC-derived SElI, distinct from conventional electrolyte-derived SEl, enables uniform Li deposition upon long cycling.
Stable cycling (over 200 cycles) of a 4 V Li|NCM523 battery cell was achieved under lean electrolyte (7 pl mAh=), limited Li
excess (1.9-fold excess of Li) and high areal capacity (3.4 mAh cm)

Nat. Mater. 2019, 18 (4), 384-389. 6



Reactive material Chemical attaching On site forming SEI
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SEl Chemistry ruled by the RPC composite
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The lamellar composite provides excellent SEl stability on cycling.
The unreacted RPC serves as a reservoir to maintain the SEl on cycling.

Nat. Mater. 2019, 18 (4), 384-389.



Nanostructure of the RPC-derived SEI

Three layers:
unreacted RPC,
RPC-derived SEI (~¥90-120 nm) and Li.
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Electrochemical performance of RPC-stabilized Li metal batteries
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The polymer—inorganic structure of the RPC-derived
SEIl confers good stability and effective suppression of
electrolyte decomposition based on the NMR studies.

10
Nat. Mater. 2019, 18 (4), 384-389.



Technical Accomplishment - 2. Low-temperature (-15 °C) Li anode SEI

Needle-shaped Li

f Li metal’on bare Cu 23 “Ermetalon EAMCH

Highly crystalline

The electrochemically active EAM modification on Cu providing
the LiF-rich inner phase and amorphous outer layer, can
efficiently improve the cycling performance of Li metal batteries
at -15 °C.

At-15°C, 6 A cm?& 6 mAh cm™
The EAM Cu enables the island-shaped Li deposition.
11



Interface chemistry in the presence of EAM
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The sulfonyl fluoride group of EAM provides LiF-rich layer at the top of deposited Li, along with
the formation of —SO,Li salts at the interface between the Cu substrate and deposited Li.
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SEl Nanostructure regulated by EAM

Active, EAM Cu, -15°C Inactive, without LiF generation Bare Cu, 25°C
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Uniform and dense inner LiF-rich phase and amorphous outer layer are
formed at low temperature (-15 °C), while the electrochemically inactive
modification and bare Cu result in incompact and non-uniform interface.
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Stable interface enabled by EAM

3D Cu surface after cycling
Bare Cu foil (50 cycles, after Li stripping Bare Cu foil (200 cycles, after Li stripping Bare Cu host (50 cycles after Li stripping) Bare Cu host 200 cycles, after L| stnppln

EAM Cu foil (50 cycles, after Li stripping) &

|
The EAM 2D/3D Cu prowded clean surface over 200 cycles, however, the
bare Cu resulted in dead Li and waste SElI.




Restrained galvanic corrosion and surface self-discharge by EAM
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Electrochemical performance enhanced by EAM
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The LI@EAM Cu anodes provide wide temperature
window (-30—45 °C).

At low temperature (-15 °C) the LI@EAM Cu
anodes demonstrates dramatically improved
cycling performance, which is comparative to the
performance at 25 °C.
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The project was not reviewed last year.
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Partners/Collaborators

Collaboration with Dr. Alan Goliaszewski at Ashland Specialty
Ingredients G.P. on the scale-up fabrication of the Li-ion conducting
polymer.

Collaboration with Dr. Ji-Guang Zhang at PNNL on fabrication and
testing of Li metal batteries with the protective layers.

Collaboration with Dr. Anh Ngo on computational modeling from
Argonne National Lab.



Remaining Challenges and Barriers

Further optimize the synthesis of multifunctional Li-ion
conducting interfacial materials with cheaper and readily
available precursors.

Completely suppressing the Li dendrite upon long cycling.

Application of the protective Li metal anodes under higher
specific capacity for promising practical application under lean
electrolyte.



Proposed Future Work

Ongoing
(FY20 and FY21)

Study the effects of the interfacial layer on the lithium nucleation.
(In progress, July 2020)

Develop protected Li anodes using optimal electrolyte, which have
99.9% CE of Li deposition at a capacity of 4 mAh/cm? (Oct. 2020)

Demonstrate Li metal batteries with a cycle life of 100 cycles under
limited Li and lean-electrolyte conditions. (March 2021)



Summary

* Develop a new polymer—inorganic SEI for Li anodes using RPC rather than a reactive
electrolyte. The so-formed SEl enables stable cycling of Li metal batteries under lean
electrolyte, limited Li excess and high capacity conditions.

* Novel EAM strategy regulated the uniform Li deposition and efficiently improved the
cycling performance of Li metal batteries at low temperature (-15 °C).
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Interfacial stability of RPC-stabilized Li anodes

Electrochemical impedance spectroscopy
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Cycling performance of RPC-stabilized Li anodes
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Cis
SEl on bare Cu (25 °C)
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Interface stabilized by the LiF-rich inner layer
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Collaboration with Dr. Anh Ngo from Argonne National Lab. 57




